Skip to contents

Estimates the runtimes of jobs using the random forest implemented in ranger. Observed runtimes are retrieved from the Registry and runtimes are predicted for unfinished jobs.

The estimated remaining time is calculated in the print method. You may also pass n here to determine the number of parallel jobs which is then used in a simple Longest Processing Time (LPT) algorithm to give an estimate for the parallel runtime.

Usage

estimateRuntimes(tab, ..., reg = getDefaultRegistry())

# S3 method for class 'RuntimeEstimate'
print(x, n = 1L, ...)

Arguments

tab

[data.table]
Table with column “job.id” and additional columns to predict the runtime. Observed runtimes will be looked up in the registry and serve as dependent variable. All columns in tab except “job.id” will be passed to ranger as independent variables to fit the model.

...

[ANY]
Additional parameters passed to ranger. Ignored for the print method.

reg

[Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

x

[RuntimeEstimate]
Object to print.

n

[integer(1)]
Number of parallel jobs to assume for runtime estimation.

Value

[RuntimeEstimate] which is a list with two named elements: “runtimes” is a data.table with columns “job.id”, “runtime” (in seconds) and “type” (“estimated” if runtime is estimated, “observed” if runtime was observed). The other element of the list named “model”] contains the fitted random forest object.

See also

binpack and lpt to chunk jobs according to their estimated runtimes.

Examples

# Create a simple toy registry
set.seed(1)
tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1)
#> No readable configuration file found
#> Created registry in '/tmp/batchtools-example/reg' using cluster functions 'Interactive'
addProblem(name = "iris", data = iris, fun = function(data, ...) nrow(data), reg = tmp)
#> Adding problem 'iris'
addAlgorithm(name = "nrow", function(instance, ...) nrow(instance), reg = tmp)
#> Adding algorithm 'nrow'
addAlgorithm(name = "ncol", function(instance, ...) ncol(instance), reg = tmp)
#> Adding algorithm 'ncol'
addExperiments(algo.designs = list(nrow = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)
#> Adding 250 experiments ('iris'[1] x 'nrow'[250] x repls[1]) ...
addExperiments(algo.designs = list(ncol = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)
#> Adding 250 experiments ('iris'[1] x 'ncol'[250] x repls[1]) ...

# We use the job parameters to predict runtimes
tab = unwrap(getJobPars(reg = tmp))

# First we need to submit some jobs so that the forest can train on some data.
# Thus, we just sample some jobs from the registry while grouping by factor variables.
library(data.table)
ids = tab[, .SD[sample(nrow(.SD), 5)], by = c("problem", "algorithm", "y")]
setkeyv(ids, "job.id")
submitJobs(ids, reg = tmp)
#> Submitting 50 jobs in 50 chunks using cluster functions 'Interactive' ...
waitForJobs(reg = tmp)
#> [1] TRUE

# We "simulate" some more realistic runtimes here to demonstrate the functionality:
# - Algorithm "ncol" is 5 times more expensive than "nrow"
# - x has no effect on the runtime
# - If y is "a" or "b", the runtimes are really high
runtime = function(algorithm, x, y) {
  ifelse(algorithm == "nrow", 100L, 500L) + 1000L * (y %in% letters[1:2])
}
tmp$status[ids, done := done + tab[ids, runtime(algorithm, x, y)]]
#> Key: <job.id>
#>      job.id def.id  submitted    started       done  error mem.used resource.id
#>       <int>  <int>      <num>      <num>      <num> <char>    <num>       <int>
#>   1:      1      1         NA         NA         NA   <NA>       NA          NA
#>   2:      2      2         NA         NA         NA   <NA>       NA          NA
#>   3:      3      3         NA         NA         NA   <NA>       NA          NA
#>   4:      4      4         NA         NA         NA   <NA>       NA          NA
#>   5:      5      5         NA         NA         NA   <NA>       NA          NA
#>  ---                                                                           
#> 496:    496    496         NA         NA         NA   <NA>       NA          NA
#> 497:    497    497         NA         NA         NA   <NA>       NA          NA
#> 498:    498    498         NA         NA         NA   <NA>       NA          NA
#> 499:    499    499 1764152569 1764152569 1764153069   <NA>       NA           1
#> 500:    500    500         NA         NA         NA   <NA>       NA          NA
#>           batch.id log.file                            job.hash job.name  repl
#>             <char>   <char>                              <char>   <char> <int>
#>   1:          <NA>     <NA>                                <NA>     <NA>     1
#>   2:          <NA>     <NA>                                <NA>     <NA>     1
#>   3:          <NA>     <NA>                                <NA>     <NA>     1
#>   4:          <NA>     <NA>                                <NA>     <NA>     1
#>   5:          <NA>     <NA>                                <NA>     <NA>     1
#>  ---                                                                          
#> 496:          <NA>     <NA>                                <NA>     <NA>     1
#> 497:          <NA>     <NA>                                <NA>     <NA>     1
#> 498:          <NA>     <NA>                                <NA>     <NA>     1
#> 499: cfInteractive     <NA> job9a2771e603043c31788ff87c02c0103d     <NA>     1
#> 500:          <NA>     <NA>                                <NA>     <NA>     1
rjoin(sjoin(tab, ids), getJobStatus(ids, reg = tmp)[, c("job.id", "time.running")])
#> Key: <job.id>
#>     job.id problem algorithm     x      y   time.running
#>      <int>  <char>    <char> <int> <char>     <difftime>
#>  1:     32    iris      nrow     7      b 1100.0330 secs
#>  2:     42    iris      nrow     9      b 1100.0321 secs
#>  3:     47    iris      nrow    10      b 1100.0322 secs
#>  4:     66    iris      nrow    14      a 1100.0322 secs
#>  5:     73    iris      nrow    15      c  100.0322 secs
#>  6:     75    iris      nrow    15      e  100.0319 secs
#>  7:     86    iris      nrow    18      a 1100.0318 secs
#>  8:    100    iris      nrow    20      e  100.0319 secs
#>  9:    101    iris      nrow    21      a 1100.0322 secs
#> 10:    103    iris      nrow    21      c  100.0325 secs
#> 11:    123    iris      nrow    25      c  100.0322 secs
#> 12:    125    iris      nrow    25      e  100.0320 secs
#> 13:    161    iris      nrow    33      a 1100.0321 secs
#> 14:    165    iris      nrow    33      e  100.0320 secs
#> 15:    169    iris      nrow    34      d  100.0319 secs
#> 16:    183    iris      nrow    37      c  100.0320 secs
#> 17:    184    iris      nrow    37      d  100.0319 secs
#> 18:    203    iris      nrow    41      c  100.0320 secs
#> 19:    207    iris      nrow    42      b 1100.0318 secs
#> 20:    209    iris      nrow    42      d  100.0318 secs
#> 21:    220    iris      nrow    44      e  100.0319 secs
#> 22:    227    iris      nrow    46      b 1100.0319 secs
#> 23:    229    iris      nrow    46      d  100.0317 secs
#> 24:    231    iris      nrow    47      a 1100.0319 secs
#> 25:    244    iris      nrow    49      d  100.0317 secs
#> 26:    260    iris      ncol     2      e  500.0318 secs
#> 27:    276    iris      ncol     6      a 1500.0320 secs
#> 28:    278    iris      ncol     6      c  500.0333 secs
#> 29:    279    iris      ncol     6      d  500.0325 secs
#> 30:    296    iris      ncol    10      a 1500.0326 secs
#> 31:    320    iris      ncol    14      e  500.0324 secs
#> 32:    340    iris      ncol    18      e  500.0323 secs
#> 33:    347    iris      ncol    20      b 1500.0325 secs
#> 34:    363    iris      ncol    23      c  500.0337 secs
#> 35:    369    iris      ncol    24      d  500.0329 secs
#> 36:    373    iris      ncol    25      c  500.0328 secs
#> 37:    387    iris      ncol    28      b 1500.0329 secs
#> 38:    410    iris      ncol    32      e  500.0325 secs
#> 39:    421    iris      ncol    35      a 1500.0325 secs
#> 40:    436    iris      ncol    38      a 1500.0324 secs
#> 41:    444    iris      ncol    39      d  500.0327 secs
#> 42:    448    iris      ncol    40      c  500.0325 secs
#> 43:    456    iris      ncol    42      a 1500.0324 secs
#> 44:    459    iris      ncol    42      d  500.0333 secs
#> 45:    467    iris      ncol    44      b 1500.0334 secs
#> 46:    468    iris      ncol    44      c  500.0330 secs
#> 47:    475    iris      ncol    45      e  500.0331 secs
#> 48:    482    iris      ncol    47      b 1500.0332 secs
#> 49:    492    iris      ncol    49      b 1500.0383 secs
#> 50:    499    iris      ncol    50      d  500.0337 secs
#>     job.id problem algorithm     x      y   time.running

# Estimate runtimes:
est = estimateRuntimes(tab, reg = tmp)
print(est)
#> Runtime Estimate for 500 jobs with 1 CPUs
#>   Done     : 0d 09h 43m 21.6s
#>   Remaining: 3d 17h 35m 47.4s
#>   Total    : 4d 03h 19m 9.0s
rjoin(tab, est$runtimes)
#> Key: <job.id>
#>      job.id problem algorithm     x      y      type   runtime
#>       <int>  <char>    <char> <int> <char>    <fctr>     <num>
#>   1:      1    iris      nrow     1      a estimated 1104.0461
#>   2:      2    iris      nrow     1      b estimated 1088.0005
#>   3:      3    iris      nrow     1      c estimated  338.5989
#>   4:      4    iris      nrow     1      d estimated  318.2378
#>   5:      5    iris      nrow     1      e estimated  317.9085
#>  ---                                                          
#> 496:    496    iris      ncol    50      a estimated 1387.8280
#> 497:    497    iris      ncol    50      b estimated 1394.9184
#> 498:    498    iris      ncol    50      c estimated  618.9306
#> 499:    499    iris      ncol    50      d  observed  500.0337
#> 500:    500    iris      ncol    50      e estimated  580.0825
print(est, n = 10)
#> Runtime Estimate for 500 jobs with 10 CPUs
#>   Done     : 0d 09h 43m 21.6s
#>   Remaining: 3d 17h 35m 47.4s
#>   Parallel : 0d 08h 58m 16.3s
#>   Total    : 4d 03h 19m 9.0s

# Submit jobs with longest runtime first:
ids = est$runtimes[type == "estimated"][order(runtime, decreasing = TRUE)]
print(ids)
#>      job.id      type   runtime
#>       <int>    <fctr>     <num>
#>   1:    466 estimated 1424.2072
#>   2:    461 estimated 1420.8138
#>   3:    472 estimated 1417.8669
#>   4:    462 estimated 1416.9134
#>   5:    457 estimated 1416.9133
#>  ---                           
#> 446:    185 estimated  133.4590
#> 447:    204 estimated  132.9087
#> 448:    189 estimated  132.4590
#> 449:    174 estimated  131.4416
#> 450:    179 estimated  130.2949
if (FALSE) { # \dontrun{
submitJobs(ids, reg = tmp)
} # }

# Group jobs into chunks with runtime < 1h
ids = est$runtimes[type == "estimated"]
ids[, chunk := binpack(runtime, 3600)]
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1104.0461    48
#>   2:      2 estimated 1088.0005    52
#>   3:      3 estimated  338.5989    37
#>   4:      4 estimated  318.2378    33
#>   5:      5 estimated  317.9085    70
#>  ---                                 
#> 446:    495 estimated  585.0171    15
#> 447:    496 estimated 1387.8280    17
#> 448:    497 estimated 1394.9184    13
#> 449:    498 estimated  618.9306     4
#> 450:    500 estimated  580.0825    17
print(ids)
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1104.0461    48
#>   2:      2 estimated 1088.0005    52
#>   3:      3 estimated  338.5989    37
#>   4:      4 estimated  318.2378    33
#>   5:      5 estimated  317.9085    70
#>  ---                                 
#> 446:    495 estimated  585.0171    15
#> 447:    496 estimated 1387.8280    17
#> 448:    497 estimated 1394.9184    13
#> 449:    498 estimated  618.9306     4
#> 450:    500 estimated  580.0825    17
print(ids[, list(runtime = sum(runtime)), by = chunk])
#>     chunk  runtime
#>     <int>    <num>
#>  1:    48 3486.521
#>  2:    52 3598.806
#>  3:    37 3595.674
#>  4:    33 3598.121
#>  5:    70 3493.071
#>  6:    49 3480.762
#>  7:    54 3589.919
#>  8:    51 3594.607
#>  9:    71 3491.029
#> 10:    53 3596.295
#> 11:    55 3585.848
#> 12:    68 3499.083
#> 13:    72 3488.600
#> 14:    56 3576.969
#> 15:    69 3495.780
#> 16:    73 3482.256
#> 17:    46 3518.845
#> 18:    50 3599.764
#> 19:    42 3577.707
#> 20:    64 3512.924
#> 21:    66 3509.266
#> 22:    43 3574.094
#> 23:    65 3511.738
#> 24:    67 3507.024
#> 25:    38 3599.959
#> 26:    35 3599.586
#> 27:    60 3535.969
#> 28:    47 3494.137
#> 29:    39 3598.195
#> 30:    36 3598.731
#> 31:    41 3587.235
#> 32:    58 3548.470
#> 33:    59 3543.101
#> 34:    40 3593.835
#> 35:    57 3564.195
#> 36:    44 3540.210
#> 37:    62 3521.418
#> 38:    61 3527.278
#> 39:    45 3538.939
#> 40:    63 3515.904
#> 41:    34 3599.823
#> 42:    27 3598.451
#> 43:    23 3599.621
#> 44:    24 3594.031
#> 45:    25 3597.491
#> 46:    29 3564.062
#> 47:    26 3582.342
#> 48:    75 3599.964
#> 49:    20 3517.893
#> 50:    74 3478.383
#> 51:     8 3593.415
#> 52:    31 3599.868
#> 53:     6 3592.027
#> 54:     7 3595.832
#> 55:    12 3558.434
#> 56:     5 3593.649
#> 57:    11 3572.833
#> 58:    10 3578.199
#> 59:    32 3599.610
#> 60:    83 3599.773
#> 61:    82 3599.642
#> 62:    76 3590.200
#> 63:    81 3472.972
#> 64:     3 3599.877
#> 65:    79 3491.740
#> 66:    80 3481.754
#> 67:    77 3522.931
#> 68:    86 3573.502
#> 69:    91 2163.640
#> 70:    89 3547.870
#> 71:    78 3507.950
#> 72:    88 3556.205
#> 73:     4 3596.032
#> 74:    90 3529.595
#> 75:    84 3591.850
#> 76:    85 3580.713
#> 77:     2 3599.972
#> 78:    87 3564.720
#> 79:     9 3587.892
#> 80:    22 3598.898
#> 81:    18 3572.611
#> 82:    16 3588.081
#> 83:    21 3599.813
#> 84:    19 3568.880
#> 85:    17 3582.218
#> 86:    30 3551.126
#> 87:    13 3598.089
#> 88:    28 3572.702
#> 89:    15 3598.504
#> 90:    14 3599.101
#> 91:     1 3470.710
#>     chunk  runtime
if (FALSE) { # \dontrun{
submitJobs(ids, reg = tmp)
} # }

# Group jobs into 10 chunks with similar runtime
ids = est$runtimes[type == "estimated"]
ids[, chunk := lpt(runtime, 10)]
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1104.0461     8
#>   2:      2 estimated 1088.0005     3
#>   3:      3 estimated  338.5989     8
#>   4:      4 estimated  318.2378     3
#>   5:      5 estimated  317.9085     1
#>  ---                                 
#> 446:    495 estimated  585.0171     8
#> 447:    496 estimated 1387.8280     3
#> 448:    497 estimated 1394.9184     7
#> 449:    498 estimated  618.9306     5
#> 450:    500 estimated  580.0825     5
print(ids[, list(runtime = sum(runtime)), by = chunk])
#>     chunk  runtime
#>     <int>    <num>
#>  1:     8 32219.58
#>  2:     3 32224.97
#>  3:     1 32278.64
#>  4:     5 32279.15
#>  5:     6 32219.58
#>  6:     9 32219.46
#>  7:    10 32295.54
#>  8:     4 32294.65
#>  9:     2 32296.33
#> 10:     7 32219.47