Skip to contents

Estimates the runtimes of jobs using the random forest implemented in ranger. Observed runtimes are retrieved from the Registry and runtimes are predicted for unfinished jobs.

The estimated remaining time is calculated in the print method. You may also pass n here to determine the number of parallel jobs which is then used in a simple Longest Processing Time (LPT) algorithm to give an estimate for the parallel runtime.

Usage

estimateRuntimes(tab, ..., reg = getDefaultRegistry())

# S3 method for class 'RuntimeEstimate'
print(x, n = 1L, ...)

Arguments

tab

[data.table]
Table with column “job.id” and additional columns to predict the runtime. Observed runtimes will be looked up in the registry and serve as dependent variable. All columns in tab except “job.id” will be passed to ranger as independent variables to fit the model.

...

[ANY]
Additional parameters passed to ranger. Ignored for the print method.

reg

[Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

x

[RuntimeEstimate]
Object to print.

n

[integer(1)]
Number of parallel jobs to assume for runtime estimation.

Value

[RuntimeEstimate] which is a list with two named elements: “runtimes” is a data.table with columns “job.id”, “runtime” (in seconds) and “type” (“estimated” if runtime is estimated, “observed” if runtime was observed). The other element of the list named “model”] contains the fitted random forest object.

See also

binpack and lpt to chunk jobs according to their estimated runtimes.

Examples

# Create a simple toy registry
set.seed(1)
tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1)
#> No readable configuration file found
#> Created registry in '/tmp/batchtools-example/reg' using cluster functions 'Interactive'
addProblem(name = "iris", data = iris, fun = function(data, ...) nrow(data), reg = tmp)
#> Adding problem 'iris'
addAlgorithm(name = "nrow", function(instance, ...) nrow(instance), reg = tmp)
#> Adding algorithm 'nrow'
addAlgorithm(name = "ncol", function(instance, ...) ncol(instance), reg = tmp)
#> Adding algorithm 'ncol'
addExperiments(algo.designs = list(nrow = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)
#> Adding 250 experiments ('iris'[1] x 'nrow'[250] x repls[1]) ...
addExperiments(algo.designs = list(ncol = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)
#> Adding 250 experiments ('iris'[1] x 'ncol'[250] x repls[1]) ...

# We use the job parameters to predict runtimes
tab = unwrap(getJobPars(reg = tmp))

# First we need to submit some jobs so that the forest can train on some data.
# Thus, we just sample some jobs from the registry while grouping by factor variables.
library(data.table)
ids = tab[, .SD[sample(nrow(.SD), 5)], by = c("problem", "algorithm", "y")]
setkeyv(ids, "job.id")
submitJobs(ids, reg = tmp)
#> Submitting 50 jobs in 50 chunks using cluster functions 'Interactive' ...
waitForJobs(reg = tmp)
#> [1] TRUE

# We "simulate" some more realistic runtimes here to demonstrate the functionality:
# - Algorithm "ncol" is 5 times more expensive than "nrow"
# - x has no effect on the runtime
# - If y is "a" or "b", the runtimes are really high
runtime = function(algorithm, x, y) {
  ifelse(algorithm == "nrow", 100L, 500L) + 1000L * (y %in% letters[1:2])
}
tmp$status[ids, done := done + tab[ids, runtime(algorithm, x, y)]]
#> Key: <job.id>
#>      job.id def.id  submitted    started       done  error mem.used resource.id
#>       <int>  <int>      <num>      <num>      <num> <char>    <num>       <int>
#>   1:      1      1         NA         NA         NA   <NA>       NA          NA
#>   2:      2      2         NA         NA         NA   <NA>       NA          NA
#>   3:      3      3         NA         NA         NA   <NA>       NA          NA
#>   4:      4      4         NA         NA         NA   <NA>       NA          NA
#>   5:      5      5         NA         NA         NA   <NA>       NA          NA
#>  ---                                                                           
#> 496:    496    496         NA         NA         NA   <NA>       NA          NA
#> 497:    497    497         NA         NA         NA   <NA>       NA          NA
#> 498:    498    498         NA         NA         NA   <NA>       NA          NA
#> 499:    499    499 1755115437 1755115437 1755115937   <NA>       NA           1
#> 500:    500    500         NA         NA         NA   <NA>       NA          NA
#>           batch.id log.file                            job.hash job.name  repl
#>             <char>   <char>                              <char>   <char> <int>
#>   1:          <NA>     <NA>                                <NA>     <NA>     1
#>   2:          <NA>     <NA>                                <NA>     <NA>     1
#>   3:          <NA>     <NA>                                <NA>     <NA>     1
#>   4:          <NA>     <NA>                                <NA>     <NA>     1
#>   5:          <NA>     <NA>                                <NA>     <NA>     1
#>  ---                                                                          
#> 496:          <NA>     <NA>                                <NA>     <NA>     1
#> 497:          <NA>     <NA>                                <NA>     <NA>     1
#> 498:          <NA>     <NA>                                <NA>     <NA>     1
#> 499: cfInteractive     <NA> job55d366655f2487b7a32ee3100b164e08     <NA>     1
#> 500:          <NA>     <NA>                                <NA>     <NA>     1
rjoin(sjoin(tab, ids), getJobStatus(ids, reg = tmp)[, c("job.id", "time.running")])
#> Key: <job.id>
#>     job.id problem algorithm     x      y   time.running
#>      <int>  <char>    <char> <int> <char>     <difftime>
#>  1:     32    iris      nrow     7      b 1100.0348 secs
#>  2:     42    iris      nrow     9      b 1100.0346 secs
#>  3:     47    iris      nrow    10      b 1100.0338 secs
#>  4:     66    iris      nrow    14      a 1100.0333 secs
#>  5:     73    iris      nrow    15      c  100.0333 secs
#>  6:     75    iris      nrow    15      e  100.0368 secs
#>  7:     86    iris      nrow    18      a 1100.0355 secs
#>  8:    100    iris      nrow    20      e  100.0352 secs
#>  9:    101    iris      nrow    21      a 1100.0337 secs
#> 10:    103    iris      nrow    21      c  100.0334 secs
#> 11:    123    iris      nrow    25      c  100.0330 secs
#> 12:    125    iris      nrow    25      e  100.0338 secs
#> 13:    161    iris      nrow    33      a 1100.0356 secs
#> 14:    165    iris      nrow    33      e  100.0341 secs
#> 15:    169    iris      nrow    34      d  100.0330 secs
#> 16:    183    iris      nrow    37      c  100.0332 secs
#> 17:    184    iris      nrow    37      d  100.0368 secs
#> 18:    203    iris      nrow    41      c  100.0350 secs
#> 19:    207    iris      nrow    42      b 1100.0357 secs
#> 20:    209    iris      nrow    42      d  100.0340 secs
#> 21:    220    iris      nrow    44      e  100.0336 secs
#> 22:    227    iris      nrow    46      b 1100.0332 secs
#> 23:    229    iris      nrow    46      d  100.0339 secs
#> 24:    231    iris      nrow    47      a 1100.0354 secs
#> 25:    244    iris      nrow    49      d  100.0343 secs
#> 26:    260    iris      ncol     2      e  500.0331 secs
#> 27:    276    iris      ncol     6      a 1500.0334 secs
#> 28:    278    iris      ncol     6      c  500.0368 secs
#> 29:    279    iris      ncol     6      d  500.0355 secs
#> 30:    296    iris      ncol    10      a 1500.0353 secs
#> 31:    320    iris      ncol    14      e  500.0333 secs
#> 32:    340    iris      ncol    18      e  500.0335 secs
#> 33:    347    iris      ncol    20      b 1500.0364 secs
#> 34:    363    iris      ncol    23      c  500.0354 secs
#> 35:    369    iris      ncol    24      d  500.0352 secs
#> 36:    373    iris      ncol    25      c  500.0334 secs
#> 37:    387    iris      ncol    28      b 1500.0340 secs
#> 38:    410    iris      ncol    32      e  500.0385 secs
#> 39:    421    iris      ncol    35      a 1500.0361 secs
#> 40:    436    iris      ncol    38      a 1500.0345 secs
#> 41:    444    iris      ncol    39      d  500.0332 secs
#> 42:    448    iris      ncol    40      c  500.0337 secs
#> 43:    456    iris      ncol    42      a 1500.0392 secs
#> 44:    459    iris      ncol    42      d  500.0354 secs
#> 45:    467    iris      ncol    44      b 1500.0332 secs
#> 46:    468    iris      ncol    44      c  500.0335 secs
#> 47:    475    iris      ncol    45      e  500.0379 secs
#> 48:    482    iris      ncol    47      b 1500.0351 secs
#> 49:    492    iris      ncol    49      b 1500.0366 secs
#> 50:    499    iris      ncol    50      d  500.0333 secs
#>     job.id problem algorithm     x      y   time.running

# Estimate runtimes:
est = estimateRuntimes(tab, reg = tmp)
print(est)
#> Runtime Estimate for 500 jobs with 1 CPUs
#>   Done     : 0d 09h 43m 21.7s
#>   Remaining: 3d 17h 35m 7.4s
#>   Total    : 4d 03h 18m 29.1s
rjoin(tab, est$runtimes)
#> Key: <job.id>
#>      job.id problem algorithm     x      y      type   runtime
#>       <int>  <char>    <char> <int> <char>    <fctr>     <num>
#>   1:      1    iris      nrow     1      a estimated 1103.6481
#>   2:      2    iris      nrow     1      b estimated 1087.4424
#>   3:      3    iris      nrow     1      c estimated  336.2410
#>   4:      4    iris      nrow     1      d estimated  316.6670
#>   5:      5    iris      nrow     1      e estimated  315.2178
#>  ---                                                          
#> 496:    496    iris      ncol    50      a estimated 1385.9546
#> 497:    497    iris      ncol    50      b estimated 1392.8439
#> 498:    498    iris      ncol    50      c estimated  617.8169
#> 499:    499    iris      ncol    50      d  observed  500.0333
#> 500:    500    iris      ncol    50      e estimated  577.6098
print(est, n = 10)
#> Runtime Estimate for 500 jobs with 10 CPUs
#>   Done     : 0d 09h 43m 21.7s
#>   Remaining: 3d 17h 35m 7.4s
#>   Parallel : 0d 08h 58m 14.8s
#>   Total    : 4d 03h 18m 29.1s

# Submit jobs with longest runtime first:
ids = est$runtimes[type == "estimated"][order(runtime, decreasing = TRUE)]
print(ids)
#>      job.id      type   runtime
#>       <int>    <fctr>     <num>
#>   1:    466 estimated 1424.3352
#>   2:    461 estimated 1420.9421
#>   3:    472 estimated 1416.9936
#>   4:    462 estimated 1416.8405
#>   5:    457 estimated 1416.0405
#>  ---                           
#> 446:    194 estimated  133.4060
#> 447:    185 estimated  132.4015
#> 448:    189 estimated  131.7394
#> 449:    174 estimated  131.1215
#> 450:    179 estimated  129.9753
if (FALSE) { # \dontrun{
submitJobs(ids, reg = tmp)
} # }

# Group jobs into chunks with runtime < 1h
ids = est$runtimes[type == "estimated"]
ids[, chunk := binpack(runtime, 3600)]
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1103.6481    48
#>   2:      2 estimated 1087.4424    52
#>   3:      3 estimated  336.2410    37
#>   4:      4 estimated  316.6670    33
#>   5:      5 estimated  315.2178    70
#>  ---                                 
#> 446:    495 estimated  583.3444    15
#> 447:    496 estimated 1385.9546    19
#> 448:    497 estimated 1392.8439    13
#> 449:    498 estimated  617.8169     4
#> 450:    500 estimated  577.6098    22
print(ids)
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1103.6481    48
#>   2:      2 estimated 1087.4424    52
#>   3:      3 estimated  336.2410    37
#>   4:      4 estimated  316.6670    33
#>   5:      5 estimated  315.2178    70
#>  ---                                 
#> 446:    495 estimated  583.3444    15
#> 447:    496 estimated 1385.9546    19
#> 448:    497 estimated 1392.8439    13
#> 449:    498 estimated  617.8169     4
#> 450:    500 estimated  577.6098    22
print(ids[, list(runtime = sum(runtime)), by = chunk])
#>     chunk  runtime
#>     <int>    <num>
#>  1:    48 3486.041
#>  2:    52 3599.252
#>  3:    37 3598.471
#>  4:    33 3595.797
#>  5:    70 3489.390
#>  6:    49 3478.671
#>  7:    51 3594.443
#>  8:    71 3486.783
#>  9:    53 3598.058
#> 10:    68 3495.782
#> 11:    72 3483.524
#> 12:    54 3587.151
#> 13:    69 3494.589
#> 14:    73 3477.851
#> 15:    46 3516.988
#> 16:    50 3599.902
#> 17:    42 3572.702
#> 18:    63 3518.452
#> 19:    66 3505.528
#> 20:    43 3568.622
#> 21:    64 3515.915
#> 22:    67 3503.356
#> 23:    38 3598.313
#> 24:    60 3533.263
#> 25:    35 3599.559
#> 26:    47 3493.657
#> 27:    39 3591.530
#> 28:    55 3582.077
#> 29:    58 3547.763
#> 30:    41 3583.580
#> 31:    57 3561.601
#> 32:    36 3599.575
#> 33:    40 3587.694
#> 34:    56 3571.628
#> 35:    59 3543.274
#> 36:    44 3534.044
#> 37:    61 3524.581
#> 38:    62 3522.177
#> 39:    45 3533.094
#> 40:    34 3599.918
#> 41:    65 3511.171
#> 42:    27 3598.000
#> 43:    24 3598.219
#> 44:    28 3576.024
#> 45:    25 3599.683
#> 46:    23 3598.927
#> 47:    29 3568.857
#> 48:    75 3599.769
#> 49:    12 3565.943
#> 50:    74 3477.284
#> 51:     8 3591.486
#> 52:    21 3517.502
#> 53:    20 3523.441
#> 54:     7 3593.503
#> 55:    11 3568.155
#> 56:     5 3594.547
#> 57:     6 3599.627
#> 58:    32 3599.757
#> 59:    10 3581.631
#> 60:    80 3483.700
#> 61:    83 3597.182
#> 62:     2 3599.786
#> 63:    76 3596.628
#> 64:    79 3494.532
#> 65:    81 3471.919
#> 66:    77 3519.921
#> 67:    87 3563.475
#> 68:    90 3523.224
#> 69:    91 2292.731
#> 70:    78 3504.521
#> 71:    89 3543.274
#> 72:     4 3594.086
#> 73:    86 3572.755
#> 74:    85 3578.980
#> 75:     3 3599.995
#> 76:    88 3553.705
#> 77:    82 3599.121
#> 78:    84 3588.278
#> 79:     9 3587.548
#> 80:    30 3561.745
#> 81:    19 3573.905
#> 82:    17 3586.588
#> 83:    31 3552.439
#> 84:    13 3596.849
#> 85:    14 3599.422
#> 86:    22 3598.085
#> 87:    18 3581.075
#> 88:    26 3587.389
#> 89:    15 3599.314
#> 90:    16 3597.013
#> 91:     1 3470.053
#>     chunk  runtime
if (FALSE) { # \dontrun{
submitJobs(ids, reg = tmp)
} # }

# Group jobs into 10 chunks with similar runtime
ids = est$runtimes[type == "estimated"]
ids[, chunk := lpt(runtime, 10)]
#> Key: <job.id>
#>      job.id      type   runtime chunk
#>       <int>    <fctr>     <num> <int>
#>   1:      1 estimated 1103.6481     3
#>   2:      2 estimated 1087.4424     9
#>   3:      3 estimated  336.2410     8
#>   4:      4 estimated  316.6670     6
#>   5:      5 estimated  315.2178     2
#>  ---                                 
#> 446:    495 estimated  583.3444     1
#> 447:    496 estimated 1385.9546    10
#> 448:    497 estimated 1392.8439     9
#> 449:    498 estimated  617.8169     5
#> 450:    500 estimated  577.6098     1
print(ids[, list(runtime = sum(runtime)), by = chunk])
#>     chunk  runtime
#>     <int>    <num>
#>  1:     3 32294.71
#>  2:     9 32214.29
#>  3:     8 32212.39
#>  4:     6 32218.41
#>  5:     2 32277.32
#>  6:     5 32212.50
#>  7:     4 32212.12
#>  8:    10 32276.53
#>  9:     1 32294.28
#> 10:     7 32294.81